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Fig. 1. Our denoiser targets images from interactive path-tracers with low sample per pixel (spp) budget (a). It runs at interactive rates and produces
temporally-stable, high-quality results (c), with better details and fewer artifacts than state-of-the-art off-line denoisers (b), and significantly outperforms
interactive denoisers (not shown). Timings are recorded using PyTorch implementations on a GeForce RTX 2080 Ti graphics card. See Table 1 for our optimized
implementation that runs interactively. The reference (d) was rendered with a much higher computational budget. The resolution is 1024 × 1024.

High-quality denoising of Monte Carlo low-sample renderings remains a
critical challenge for practical interactive ray tracing. We present a new
learning-based denoiser that achieves state-of-the-art quality and runs at
interactive rates. Our model processes individual path-traced samples with
a lightweight neural network to extract per-pixel feature vectors. The rest
of our pipeline operates in pixel space. We define a novel pairwise affinity
over the features in a pixel neighborhood, from which we assemble dilated
spatial kernels to filter the noisy radiance. Our denoiser is temporally sta-
ble thanks to two mechanisms. First, we keep a running average of the
noisy radiance and intermediate features, using a per-pixel recursive filter
with learned weights. Second, we use a small temporal kernel based on the
pairwise affinity between features of consecutive frames. Our experiments
show our new affinities lead to higher quality outputs than techniques with
comparable computational costs, and better high-frequency details than
kernel-predicting approaches. Our model matches or outperfoms state-of-
the-art offline denoisers in the low-sample count regime (2–8 samples per
pixel), and runs at interactive frame rates at 1080p resolution.
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1 INTRODUCTION
Rendering noise-free path-traced images at interactive frame rates
remains an elusive objective despite the advent of hardware raytrac-
ing accelerators and GPU raytracing APIs [Khronos 2020; Microsoft
2021; Parker et al. 2013]. The fastest modern GPUs can only afford
to trace a handful of samples per pixel in real time for typical display
resolutions, leading to severe noise in the renderings.

State-of-the-artMonte Carlo denoisers use large kernel-predicting
neural networks [Bako et al. 2017; Gharbi et al. 2019; Kettunen et al.
2019; Vogels et al. 2018; Xu et al. 2019]. Their computational cost
is rarely an issue for off-line rendering, since raytracing dominates
the overall latency, but it is impractical for interactive applications.
The fastest denoisers typically use hand-designed filters [Mara et al.
2017] or muchmore compact neural networks [Chaitanya et al. 2017;
Meng et al. 2020] that sacrifice quality for performance. Denoising
artifacts are often amplified in video animation where care must be
taken to create temporally stable results that do not contain high-
frequency artifacts between adjacent frames. The shortcomings
of interactive denoisers are particularly salient around soft shad-
ows, complex global illumination, glossy reflections and refractive
materials — precisely where raytracing has the most appeal.
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We present a new denoiser for low-sample, interactive raytrac-
ing applications that directly operates on the path-traced samples.
Our model is a lightweight neural network (∼940k parameters) that
summarizes rich per-sample information into low-dimensional per-
pixel feature vectors. We define a novel pairwise affinity over these
features, which we use to weight the contributions of neighbor-
ing per-pixel radiance values in a local weighted average filtering
step. These new affinity-based kernels lead to better denoising per-
formance compared to kernel-predicting techniques [Bako et al.
2017; Gharbi et al. 2019; Munkberg and Hasselgren 2020; Vogels
et al. 2018], especially when reconstructing fine details, or in high-
frequency light transport configurations.

We evaluate our denoiser on a diverse set of static renderings and
fly-through animations. We show it produces much cleaner outputs
and lower numerical error than state-of-the-art interactive denoisers
with comparable runtime cost. For low-sample count renderings,
our model even matches or outperforms the state-of-the-art off-line
denoisers, for a fraction of the computational cost (Figure 1). In
short, our contributions are the following:

• A state-of-the-art denoiser for low-sample count Monte Carlo
rendering that runs at interactive rates and outperforms the
quality of even powerful off-line baselines in the low-sample
count regime,

• A novel filtering algorithm that uses pairwise affinity of per-
pixel deep features learned from the raw path-tracing samples
to learn iteratively-applied 2D dilated kernels,

• A new temporal aggregation mechanism which uses the same
pairwise affinity to significantly improve the temporal stabil-
ity of Monte Carlo denoising.

2 RELATED WORK
With the advent of powerful hardware accelerators, ray-tracing has
become viable for real-time rendering. But, because today’s GPUs
can only trace a few samples at interactive rates, fast high-quality
denoisers remain critical. We discuss the most recent related work,
and refer the reader to Zwicker et al. [2015] for an overview of
denoising techniques.

Traditional adaptive sampling and reconstruction. A priori meth-
ods approach denoising as a reconstruction problem, deriving filters
and sampling strategies from an analysis of light transport [Bel-
cour et al. 2013; Durand et al. 2005; Egan et al. 2011, 2009; Lehtinen
et al. 2012]. A posteriori methods inspired our affinities, which
strictly generalize the bilateral filter. Prior works have explored
multi-dimensional path space analysis [Hachisuka et al. 2008], mul-
tiscale filters [Overbeck et al. 2009; Rousselle et al. 2011], image-
denoising filters [Kalantari and Sen 2013; Rousselle et al. 2012],
cross-bilateral filters [Li et al. 2012; Rousselle et al. 2013], and local
regressions [Bitterli et al. 2016; Moon et al. 2014, 2016], often jointly
addressing adaptive sampling.

Machine-Learning based image-space methods. Recent work has
used neural networks for denoising, avoiding the need to manually
tune filter parameters for each scene. Kalantari et al. [2015] use a
fully-connected neural network and predict the parameters of a
cross-bilateral filter. Bako et al. [2017] showed that a convolutional

network that predicts per-pixel filtering kernels is more robust
and easier to train than models that directly output the denoised
radiance. Vogels et al. [2018] extended this techniquewithmultiscale
filtering [Delbracio et al. 2014], temporal aggregation and adaptive
sampling. Xu et al. [2019] use a generative adversarial training
procedure to improve image quality. Kuznetsov et al. [2018] predict
sampling densitymaps for adaptive sampling. Our denoiser also uses
kernels, but instead of predicting the full-rank kernels, our network
outputs feature vectors for each pixel fromwhich we define pairwise
affinities. This makes the learning problem simpler, which leads to
a more parsimonious model, suitable for interactive use.

Sample-based image-space methods. These methods strive to fully
exploit per-sample information to maximize denoising quality. Sen
and Darabi [2012] use per-sample cross-bilateral filters to filter the
noise caused by random parameters in the Monte Carlo integration.
Gharbi et al. [2019] use a neural network for sample-based denoising.
They predict splatting kernels for each sample, and take special care
in ensuring their network is invariant to permutation of the samples
within a pixel. Their method scales poorly for interactive rendering
settings because the network evaluation cost grows linearly with the
number of samples. Munkberg and Hasselgren [2020] mitigate this
issue by partitioning and averaging the samples into a fixed number
of layers, filtering the layers independently, and compositing them
front to back. Our method also processes individual samples but
applies kernels to per-pixel averages not samples, which significantly
reduces the runtime cost.

Interactive denoising. Denoisers designed for interactive applica-
tions focus on efficiency and temporal stability. Early techniques
used hierarchical wavelet filters and edge-stopping functions based
on auxiliary render buffers [Dammertz et al. 2010] or edge-aware
guided filters [Bauszat et al. 2015, 2011; He et al. 2010]. Schied
et al. [2017] used a fixed-weight recursive temporal smoothing filter
for temporal stability, which Schied et al. [2018] improved by us-
ing adaptive temporal accumulation weights. We also use adaptive
temporal accumulation in our temporal smoothing strategy, with
weights predicted by our network, but complement it with a tem-
poral kernel computed with our new affinity. Koskela et al. [2019]
brings regression-based denoising to the real-time domain. Chai-
tanya et al. [2017] achieve high-quality, temporally-stable results at
interactive frame rates using a recurrent U-net [Ronneberger et al.
2015]. Hasselgren et al. [2020] extend the work of Kuznetsov et al.
[2018] to the temporal domain and obtain better temporal stability
than Chaitanya et al. [2017] by using motion vectors to warp the
previous prediction. Meng et al. [2020] splat the noisy radiance into
a bilateral grid. Slicing in the grid along a learned guidance map
gives the denoised output. They also use a recursive filter with fixed
weight for temporal stability. We discuss the similarities between
the neural bilateral grid and our affinities in Section 3.7. Our adap-
tive temporal accumulation improves denoising performance, in
particular around occlusions and specular reflections. Our affinity-
based temporal kernel further improves temporal stability, removing
low-frequency noise and enlarging the filter’s footprint in time.
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Fig. 2. Pipeline overview. We encode the individual samples with a fully connected network, then average them to obtain per-pixel neural embeddings. We
concatenate these embeddings with the warped embeddings from the previous frame and process them with a U-Net to generate kernel parameters, affinity
features, and a temporal accumulation weight for each pixel. We compute dilated 2D kernels from the affinity and apply them iteratively to the noisy input
radiance, which is also temporally accumulated. Finally, we use a temporal kernel to blend in the previous denoised output, to get the final, denoised image.

3 DENOISING WITH LEARNED PAIRWISE AFFINITY
The key novelty in our approach is a pairwise affinity measure
on learned neural features, from which we derive spatio-temporal
filtering kernels to denoise the frames of an animation. We work
with samples from a pathtracer [Kajiya 1986] with render buffer
features r𝑥𝑦𝑠𝑡 (§ 3.1), where (𝑥,𝑦) are the pixel coordinates, 𝑠 ∈
{1, . . . , 𝑆} are the sample indices within a pixel, and 𝑡 ∈ {1, . . . ,𝑇 }
are the frame indices. In interactive applications the number of
samples per pixel is typically low (𝑆 < 8), making temporal stability
challenging. Our model addresses this via two mechanisms: first, we
use recursive filters with adaptive, per-pixel parameters to maintain
running averages of neural embeddings and noisy radiance; second,
we apply our denoising kernels to pairs of frames.

We visualize our method in Figure 2. We start by independently
extracting per-sample embeddings e𝑥𝑦𝑡 from each sample’s render
buffer data using a small pointwise network (§ 3.2). This is the only
operation on the raw samples.We use a temporal recursive filter over
the embeddings with adaptive learned parameters to propagate in-
formation between frames and then average the sample embeddings
over all samples in each pixel. From these per-pixel embeddings,
we predict a vector of parameters for each pixel using a convo-
lutional network (§ 3.3); convolutions enable information-sharing
between neighboring pixels. We use the per-pixel parameters to
construct filtering kernels at each pixel (§ 3.4), which we apply to
the noisy radiance to obtain the final, denoised output (§ 3.5.2). We
decompose the kernels into a sequence of 𝐾 = 3 dilated 2D ker-
nels [Dammertz et al. 2010; Holschneider et al. 1990; Yu and Koltun
2016] with increasing dilation, applied sequentially (§ 3.5.1), fol-
lowed by a temporal kernel (§ 3.5.2). Dilation enables larger spatial
footprints, which helps remove low-frequency noise, but has a min-
imal impact on performance relative to using large dense kernels.
The temporal kernel is built from the affinity between features of
the current and previous frames; it smoothes the output over time.

3.1 Input path-traced sample features
Previous work showed that working with samples rather than pixel
averages can improve denoising [Gharbi et al. 2019; Hachisuka
et al. 2008; Lehtinen et al. 2011, 2012], but can incur a significant
computational overhead (see Section 5.4). Similarly to [Munkberg
andHasselgren 2020], we adopt a hybrid strategy: we use per-sample

information to compute filtering weights, but the filters operate on
the integrated (box-filtered) pixel radiance L𝑥𝑦𝑡 , not the samples.

During rendering we store, for each sample, a vector of 18 render
buffer features r𝑥𝑦𝑠𝑡 , which we describe next. First, we store the
radiance, split into diffuse and specular components [Bako et al.
2017], both tonemapped with 𝑥 ↦→ log(1 + 𝑥) to compress their
dynamic range. This tonemapping is only used for the sample input
features passed to the network; our denoising kernels operate on
the linear radiance. We treat materials with roughness below a fixed
threshold (0.1 linear roughness in PBRT-v3) as specular. Second, we
use the normal (3), and depth (1) as geometric features. And third,
we characterize materials by their roughness (1), albedo (3), and 4
binary variables: emissive — indicates whether the path sampled
hits emissive surface, metallic — differentiates between dielectric
and conductors, transmissive — distinguishes between reflections
and refractions, and specular-bounce — which is ‘true’ if first vertex
on the camera path is a specular interaction. Except the radiance,
all features are computed at the first non-specular interaction.

3.2 Mapping samples to per-pixel features
Given our interactivity constraints, we keep per-sample processing
to aminimum.We independently embed the samples using a shallow
fully-connected network, then reduce the embeddings to per-pixel
summary statistics by averaging over the sample dimension:

e𝑥𝑦𝑡 =
1
𝑆

𝑆∑
𝑠=1

FC(r𝑥𝑦𝑠𝑡 ) . (1)

This fully-connected network uses leaky ReLU activations. It has
3 layers with 32 channels each. In Section 5.5.2, we show this em-
bedding strategy outperforms the simple first and second-order
statistics of raw render buffers used in previous work [Bako et al.
2017; Vogels et al. 2018] for low-spp renderings (2–8 spp).

3.3 Spatio-temporal feature propagation
We next process the per-pixel embeddings with a lightweight U-
net [Ronneberger et al. 2015]. This network takes as input the em-
beddings of both the current and previous frames and produces,
for each pixel, a set of feature vectors f𝑘𝑥𝑦𝑡 ∈ R𝑑 , and scalars 𝑎𝑘𝑥𝑦𝑡
and 𝑐𝑘𝑥𝑦𝑡 , for 𝑘 = 1, . . . , 𝐾 . We use these parameters and features to
compute 𝐾 dilated spatial kernels, which we apply sequentially to

ACM Trans. Graph., Vol. 40, No. 4, Article 37. Publication date: August 2021.



37:4 • Işık et al.

(a) input 8spp (b) input crop (d) ours (e) reference (g) our kernel(f) kernel, no(c) output, no

Fig. 3. Outlier rejection using 𝑐𝑘𝑥𝑦𝑡 . Using an independent variable for the central weight of our kernel in Equation (4) helps suppressing outliers. In this
example, we added a random perturbation on the input (a) samples, with a value up to 500× the mean of the image (b). Our ablation without the center
weight 𝑐𝑘𝑥𝑦𝑡 cannot suppress these outliers (c) because the central weight of its kernels is always 𝑤

𝑘
𝑥𝑦𝑥𝑦𝑡 = 1 (f). Our method can easily turn off the outlier (d)

by modulating the kernel’s central weight (g).

denoise the frame (§ 3.4). Specifically, we compute the spatial kernels
by calculating distances between affinity features f𝑘𝑥𝑦𝑡 , scaled by the
bandwidth parameters 𝑎𝑘𝑥𝑦𝑡 , and 𝑐𝑘𝑥𝑦𝑡 is the kernel’s central weight.
The network also outputs two additional scalars for our temporal
filtering mechanisms: 𝑏𝑥𝑦𝑡 is a bandwidth parameter modulating
the feature affinity between successive frames in a temporal kernel;
and 𝜆𝑥𝑦𝑡 is the parameter of an exponential moving average filter
that accumulates the pixel embeddings and noisy radiance tempo-
rally (Eq. (3) and (5)). Our implementation uses 𝐾 = 3. Formally,
the U-net’s output is given by:(

f𝑘𝑥𝑦𝑡 , 𝑎
𝑘
𝑥𝑦𝑡 , 𝑐

𝑘
𝑥𝑦𝑡

)
, 𝑏𝑥𝑦𝑡 , 𝜆𝑥𝑦𝑡 = UNet

(
e𝑥𝑦𝑡 ,W𝑡 ē𝑥𝑦,𝑡−1

)
. (2)

W𝑡 · is a warping operator that reprojects frame 𝑡 − 1 to frame 𝑡
with nearest neighbor interpolation using the geometric flow at
the primary intersection point computed by the path tracer [Schied
et al. 2017]. And, ē𝑥𝑦,𝑡−1 is a temporal accumulation of the pixel
embeddings defined by:{

ē𝑥𝑦0 = e𝑥𝑦0,
ē𝑥𝑦𝑡 = (1 − 𝜆𝑥𝑦𝑡 )e𝑥𝑦𝑡 + 𝜆𝑥𝑦𝑡W𝑡 ē𝑥𝑦,𝑡−1 .

(3)

This temporal accumulation of the embeddings helps make tempo-
rally consistent predictions, compared to simply passing the pre-
vious frame’s embeddings (i.e., replacing ē𝑥𝑦,𝑡−1 with e𝑥𝑦,𝑡−1 in
Equation (2)). Figure 5 shows the per-pixel blending weights can
selectively mask out (𝜆𝑥𝑦𝑡 = 0) the warped embedding when they
are inaccurate due, e.g., to occlusions/disocclusions, or moving re-
flections not captured in the geometric velocity vectors. We use a
sigmoid activation to ensure 𝜆𝑥𝑦𝑡 ∈ [0, 1]. We discuss alternative
temporal accumulation strategies in Section 5.5.4. Our U-net [Ron-
neberger et al. 2015] has 5 scales. Its structure is given by:

c64c64d → c64c64d → c64c64d → c80c80d →
c96c96u → c80c80u → c64c64u → c64c64u → c32c32,

where c𝑘 is a convolution with 𝑘 channels and 3 × 3 kernels, d is
a 2 × 2 maxpooling operator, u is 2 × 2 bilinear upsampling. Every
convolution except the last has a leaky ReLU activation. We use
concatenation in the skip connections.

3.4 Spatial kernels from pairwise affinity
We define our spatial filtering kernels as an affinity over the features
f𝑘𝑥𝑦𝑡 produced by the U-net:

𝑤𝑘𝑥𝑦𝑢𝑣𝑡 =

𝑐
𝑘
𝑥𝑦𝑡 if 𝑥 = 𝑢 and 𝑦 = 𝑣,

exp
(
−𝑎𝑘𝑥𝑦𝑡 ∥f𝑘𝑥𝑦𝑡 − f𝑘𝑢𝑣𝑡 ∥22

)
otherwise.

(4)

In the network, we use a sigmoid activation to ensure the center
weight 𝑐𝑘𝑥𝑦𝑡 is in [0, 1] and a squaring function to ensure 𝑎𝑘𝑥𝑦𝑡 ≥ 0.
The latter variable acts as a bandwidth parameter that adaptively
tunes a pixel’s sensitivity to feature differences with its neighbors.
With higher values, small differences quickly make the weight go
to zero, reducing the kernel’s effective footprint to a single pixel. As
𝑎𝑘𝑥𝑦𝑡 → 0, the filter becomes progressively insensitive to features
discrepancy, and turns into a box filter. We visualize a few kernels
and their bandwidth parameter in Figure 4.
Our network predicts central weights adaptively for each pixel.

Setting 𝑐𝑘𝑥𝑦𝑡 = 1, the center pixel contributes fully to the output.
With this weight set to 𝑐𝑘𝑥𝑦𝑡 = 0, the network can suppress the
bright outliers that often appear in low-sample renderings when
high-energy, low-probability paths are sampled. Figure 3 illustrates
this property. Wu et al. [2013] propose a similar strategy to adapt
the central weight of non-local mean filters per pixel, but use ad-
hoc closed-form expressions rather than these parameters. Previous
Monte Carlo denoising methods [Kalantari et al. 2015; Meng et al.
2020] usually suppress outliers in a pre- or post-processing step.

3.5 Temporally-stable kernel-based denoising
Prior to filtering, we accumulate the noisy radiance L𝑥𝑦𝑡 over time.
This has a denoising effect in areas where the motion vector-based
warping provides useful correspondences — and improves overall
temporal stability:{

L̄𝑥𝑦0 = L𝑥𝑦0,
L̄𝑥𝑦𝑡 = (1 − 𝜆𝑥𝑦𝑡 )L𝑥𝑦𝑡 + 𝜆𝑥𝑦𝑡W𝑡 L̄𝑥𝑦𝑡 .

(5)
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Fig. 4. Impact of the kernel bandwidth parameter 𝑎𝑘𝑥𝑦𝑡 . Lower band-
widths reduce the kernel sensitivity to feature differences, leading to larger
kernels (a). In the limit 𝑎𝑘𝑥𝑦𝑡 → 0, we get a box filter. With higher values,
the kernels are more selective and peaky (b). The map on the left shows how
the bandwidth vary spatially. Our model uses large kernels to smooth out
flat areas, but selects smaller kernels where details need to be preserved.

We use the same temporal blending weights 𝜆𝑥𝑦𝑡 as for the accumu-
lated embeddings in Equation (3). We use this temporal accumula-
tion as the input for our kernel-filtering step.We obtain the denoised
image by sequentially filtering the noisy frame L̄𝑥𝑦𝑡 with 𝐾 = 3
dilated spatial filters, and combining the result with the previous
denoised image using a temporal kernel.

3.5.1 Spatial filtering with a sequence of dilated filters. We initialize
L(0)
𝑥𝑦𝑡 := L̄𝑥𝑦𝑡 and apply the first 𝐾 − 1 kernels from Equation (4)

sequentially using the following expression:

L(𝑘)
𝑥𝑦𝑡 =

∑
𝑢,𝑣 𝑤

𝑘
𝑥𝑦𝑢𝑣L

(𝑘−1)
𝑢𝑣𝑡

𝜖 +∑
𝑢,𝑣 𝑤

𝑘
𝑥𝑦𝑢𝑣

. (6)

The sums run over a square neighborhood with dilation 2𝑘−1 (see
Figure 2 for an illustration), and 𝜖 = 10−10 is a small constant to
avoid numerical instability. Every time the radiance is filtered, the
noise statistics change, so we use different affinities at each step (i.e.,
different f𝑘𝑥𝑦𝑡 , 𝑐𝑘𝑥𝑦𝑡 and 𝑎𝑘𝑥𝑦𝑡 ). Our implementation uses kernels with
13 × 13 taps, so the kernel with the largest dilation factor 2𝐾−1 = 4
has an effective footprint of (13 − 1) × 4 + 1 = 49 pixels in each
dimension. Composing the sequential filtering steps gives an overall
pixel footprint of 85 × 85.

3.5.2 Temporal filtering. In our final filtering step, we apply a tem-
poral kernel that measures the affinity between the features of the
current and previous frame, after warping, similar to Equation (4):

𝜔𝑥𝑦𝑢𝑣𝑡 = exp
(
−𝑏𝑥𝑦𝑡 ∥f𝐾𝑥𝑦𝑡 −W𝑡 f𝐾𝑢𝑣,𝑡−1∥

2
2

)
. (7)

Here again, we ensure the bandwidth parameter𝑏𝑥𝑦𝑡 is non-negative
using a squaring function. This temporal filter uses the same features
f𝑘𝑥𝑦𝑡 as the last spatial kernel (Equation (4) with 𝑘 = 𝐾). Note that
𝑤𝑘𝑥𝑦𝑢𝑣𝑡 are the spatial kernels and 𝜔𝑥𝑦𝑢𝑣𝑡 is the temporal kernel.

(a) reference frame (b) temporal blending weights      

Fig. 5. Temporal accumulation blending weights. Our model predicts
spatially-varying blending weights 𝜆𝑥𝑦𝑡 ∈ [0, 1] quantifying how much
of the accumulated past radiance and pixel embeddings (not shown) are
carried over and blended with the next frame. The weight map (b) shows our
model discards parts of the previous frame that were occluded (red arrow),
or with large changes in appearance, like specular reflections (blue arrow).

We obtain our final denoised image using this temporal kernel
and the last spatial kernel as follows:

O𝑥𝑦𝑡 =

∑
𝑢,𝑣 𝑤

𝐾
𝑥𝑦𝑢𝑣L

(𝐾−1)
𝑢𝑣𝑡 +∑

𝑢′,𝑣′ 𝜔𝑥𝑦𝑢′𝑣′W𝑡O𝑢′𝑣′,𝑡−1

𝜖 +∑
𝑢,𝑣 𝑤

𝐾
𝑥𝑦𝑢𝑣 +

∑
𝑢′,𝑣′ 𝜔𝑥𝑦𝑢′𝑣′

. (8)

The 𝑢, 𝑣 run over a square neighborhood with dilation 2𝐾−1, and
𝑢 ′, 𝑣 ′ run over a smaller neighborhood, with dilation 1. We also use
a 13 × 13 window for the temporal kernel. Unlike Equation (6), the
𝐾-th spatial kernel is jointly normalized with the temporal filter.
We use 𝜔𝑥𝑦𝑢𝑣,0 = 0 at 𝑡 = 0.

3.6 Comparison to kernel-predicting networks
As shown by Munkberg and Hasselgren [2020]; Vogels et al. [2018],
kernel-predicting methods [Bako et al. 2017] require deeper and
larger networks to fully benefit from larger kernels. This is because
the number and complexity of pairwise interactions between pixels
under the kernel increases with kernel size. In contrast, our method
does not require such an increase in network “capacity” since we
predict per-pixel features with a closed-form affinity, rather than full-
rank kernels. In Section 5.5.6, we show our affinity-based kernels are
significantly better at reconstructing high-frequency details than
gather kernels [Bako et al. 2017].

Additionally, since we compute the kernels a posteriori from the
learned pixel affinities, we can dynamically change the kernel size at
runtime, without retraining. Kernel-predicting networks are limited
to the fixed kernel size they were trained with. This property can
be used as a dynamic quality–performance trade-off control (§ 5.4).
We analyze the effect of kernel size in Section 5.5.3.

3.7 Relation to the neural bilateral grid
Meng et al. [2020] (NBG) use a neural bilateral grid [Gharbi et al.
2017] for denoising, thus approximating a bilateral filter. They use a
3D grid: the first 2 dimensions are the screen-space coordinates, and
the third is a learned scalar parameter, which would correspond to
the range filter in a traditional bilateral filter [Tomasi and Manduchi
1998]. This is similar to using feature vectors (f𝑘𝑥𝑦𝑡 ) with dimension
𝑑 = 1 in our affinities (we use 𝑑 = 8). However, we show this
dimension parameter is critical in Section 5.5.1. Setting 𝑑 = 1 leads
to oversmoothing (Figure 9) and severely reduces quality (Table 4).
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4 DATASET AND TRAINING PROCEDURE
We train our denoiser on randomly generated training scenes (§ 4.1).
In total, we collected a training set of 7707 animations in which
a camera flies through an otherwise static scene. Each sequence
is 8-frame long and rendered at 256 × 256 resolution. For model
selection, we also render a validation with 821 scenes, using the
same random generator. Our training objective and procedure are
detailed in Section 4.2 and 4.3, respectively.

4.1 Dataset generation
We adapted the scene generator from Gharbi et al. [2019]. Our
goal is to cover a wide variety of light transport scenarios, so that
our denoiser generalizes to new scenes, by randomizing the scene
content and parameters.

Geometry. We use 6 rooms from Tungsten [Bitterli 2016] as back-
ground. For each data sample, we choose a room at random and
add 50 objects, randomly chosen from ShapeNet [Chang et al. 2015],
applying a random rigid transformation to each object. We take
the camera position into account for object placement in order to
minimize the chance of a completely occluded rendering. The ran-
domness in our generator can still lead to some be completely black
renderings which we remove in a post-processing pass.

Lights and materials. Next, each material is randomized by se-
lecting one of the PBRT-v3 materials (e.g., substrate, matte, plastic,
disney). To increase the diversity of appearance, we randomly select
texture maps from the Describable Textures Dataset [Cimpoi et al.
2014]. We randomly scale each texture for variety in the frequency
characteristics. In addition to randomizing the energy of each light
source in the background scene, we also insert 2 point light sources
with random positions and energies in order to maximize the diver-
sity of the lighting and shadow patterns.

Camera and rendering. Each scene is rendered using a perspective
pinhole cameramodel in PBRT-v3 [Pharr et al. 2016], with amodified
path tracer integrator. We randomized the camera’s field of view to
vary the frequency content of our renderings. As pointed by [Gharbi
et al. 2019], PBRT scales ray differentials (to reduce aliasing) based on
the sample count. This causes discrepancies in appearance between
the low-sample input and ground truth, so we use a constant scaling
factor instead. We render the noisy inputs using 8 samples per pixels,
storing the samples individually so we can randomize the number
of samples at the training time. We render the ground truth at 2048
spp, changing the random seed so it is not correlated with the input.

Animation and motion vectors. The animations in our training set
are simple translations or rotations of the camera. We randomize
the speed of the camera and render 8 consecutive frames per scene.
We altered PBRT-v3 to generate per-sample motion vectors. We test
whether the normal and world position in the current and previous
frame agree after warping using the motion vectors, and discard
motion vectors that fail this test.

4.2 Losses
We train our denoiser to reconstruct clean, temporally stable ani-
mations by minimizing a reconstruction loss, a temporal stability

loss, and a regularization on the affinity parameters.

L = Lrecons + 0.25 · Ltemporal + 10−5 · Lreg . (9)

We use the Symmetric Mean Absolute Percentage Error over the
linear radiance (SMAPE) [Vogels et al. 2018] as our reconstruction
loss:

Lrecons = SMAPE(O,O★), (10)
where O★ is the ground truth image. SMAPE is defined for two
tensors 𝐴 and 𝐵 as:

SMAPE(𝐴, 𝐵) = 1
3E𝑥𝑦𝑡

∥𝐴𝑥𝑦𝑡 − 𝐵𝑥𝑦𝑡 ∥1
∥𝐴𝑥𝑦𝑡 ∥1 + ∥𝐵𝑥𝑦𝑡 ∥1 + 𝜖

. (11)

The expectation E is taken over pixels and frames, ∥.∥1 is the 𝐿1
norm, and the factor 3 accounts for color channels.

To penalize inconsistency between successive frames, we use the
temporal loss:

Ltemporal = SMAPE(𝜕𝑡O, 𝜕𝑡O★), (12)

with 𝜕𝑡 the finite difference operator along the time dimension [Chai-
tanya et al. 2017].

Finally, our regularization is an 𝐿2 penalty over the kernels’ band-
width parameters:

Lreg =
∑
𝑘

E𝑥𝑦𝑡 ∥𝑎𝑘𝑥𝑦𝑡 ∥22 + E𝑥𝑦𝑡 ∥𝑏𝑥𝑦𝑡 ∥
2
2 . (13)

We found that without this regularizer, the scale ambiguity between
these parameters and the magnitude of the features f𝑘𝑥𝑦𝑡 made the
training numerically unstable.

4.3 Training details
Our denoiser is implemented in PyTorch [Paszke et al. 2019] and
trained to convergence using the ADAM optimizer [Kingma and
Ba 2014] with learning rate set to 10−4 and batch size 4; all other
optimizer settings are kept at their default values. We augment our
dataset with horizontal and vertical flips, 90 degrees rotation and
random cropping of size 128×128. Training typically converges after
750 epochs, which takes roughly 5 days for our 8-frames animation
dataset on a GeForce RTX 2080 Ti GPU and an Intel Xeon W-2235
CPU with 12 cores. Training a single-frame variant of our model
(i.e., with no temporal filtering) takes about 2 days. We multiply
the learning rate by 0.75 every 150 epochs. For the single-frame
variant, we decrease the learning rate once to 5 × 10−5 when the
validation loss plateaus, around epoch 600. During training, we
select the number of samples 𝑆 ∈ {1, 2, 4} in a round-robin fashion
at the beginning of each epoch (we use 𝑆 ∈ {2, 4, 8} for the single-
image variant). We keep the model with the best validation loss
at 4 spp (resp. 8 spp for the single-image task). We use 13 × 13
kernels during training but, because our kernels are computed from
pairwise affinities, we can change the kernel size at test time.

5 RESULTS
We evaluate our denoiser on a test dataset of 26 publicly available
scenes [Bitterli 2016; Pharr et al. 2016] converted and rendered with
PBRT-v3 [Pharr et al. 2016].We compare to state-of-the-art solutions
for both interactive and off-line denoising on 26 static renderings
and 6 videos . The videos are 120 frames long fly through animations,
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(a) input (4spp) (c) ours (d) reference(b) constant  

Fig. 6. Benefit of learning 𝜆𝑥𝑦𝑡 . Learning per-pixel blending weights in
our temporal accumulation helps discard inconsistent reprojections in the
warps, thus recovering better details in occluded areas and sharp specular
reflections (c). We show an ablation of our model that fixes 𝜆𝑥𝑦𝑡 = 0.8
for all pixels, as is done in Koskela et al. [2019]; Meng et al. [2020]; Schied
et al. [2017]. Without learnable blending weights, the model oversmoothes
specular highlights (b).

rendered at 1920 × 1024 resolution. We render the ground truth
images at 4096 spp, and the videos at 2048 spp. We use bidirectional
path tracing [Lafortune and Willems 1993; Veach and Guibas 1995]
for some scenes with complex light transport. The noisy inputs
always use uni-directional path tracing.
Our algorithm outperforms previous work in both the single

frame (§ 5.2) and animation setups (§ 5.3). It has better temporal
stability and runs at interactive framerates (§ 5.4). We analyze the
impact of our design choices in an ablation study (§ 5.5). Full res-
olution static and video results can be found in the supplemental
material, together with additional quantitative metrics.

5.1 Baselines and metrics
We compare to three state-of-the-art off-line denoisers, KPCN [Bako
et al. 2017], SBMC [Gharbi et al. 2019], and NDLE [Munkberg and
Hasselgren 2020]; and two interactive methods, NBG [Meng et al.
2020] and OptiX (ONND), adapted from Chaitanya et al. [2017].
We implemented the two variants described by Munkberg and

Hasselgren [2020]: NDLE is a high-quality but slower model; and
NDLE-ms is an interactive, multi-scale variant. Unlike the original,
our implementation of NDLE-ms is not optimized, so we exclude it
from our speed comparison. We reimplemented NBG in PyTorch
following the open-source implementation provided by the authors,
and include a slower but higher-quality variant, NBG-large, which
uses the U-Net architecture of our method in its guide net. We
followed Bako et al. [2017] for our implementation of KPCN. We
adapted the open-source code from Gharbi et al. [2019] for SBMC,
adjusting the number of filters in the fully-connected and convolu-
tional layers so that the total number of parameters roughly match
NDLE (∼ 18 million). We used the official OptiX 7.2 SDK1 for ONND,
which takes HDR radiance, normals and albedo as input, and pro-
duces HDR outputs. Unless otherwise specified we use the same
input features for our method, NDLE, and SBMC. Since NDLE uses

1https://developer.nvidia.com/designworks/optix/download

17×17 kernels, we adopted the same kernel size for SBMC and KPCN,
rather than their original 21 × 21 size. More details on the training
and architecture of the baselines can be found in supplemental.

5.1.1 Evaluation metrics. For both single images and videos, we
compare denoisers using the PSNR on the tonemapped radiance:

PSNR(O,O★) = −10 log10
(
1
3E𝑥𝑦𝑡 ∥ 𝜏 O𝑥𝑦𝑡 − 𝜏 O★

𝑥𝑦𝑡 ∥22
)
. (14)

The expectation E is over pixels and frames, the factor 3 accounts
for color channels, and 𝜏 is a tonemapping and gamma correction
operator [Reinhard et al. 2002], defined pointwise as

𝜏 : 𝑥 ∈ R+ ↦→
( 𝑥

1 + 𝑥

) 1
2.4 (15)

For animations, we also compute the Temporal Relative Mean
Absolute Error (TRMAE), which we define as:

TRMAE(O,O★) = 1
3E𝑥𝑦𝑡

∥𝜕𝑡O𝑥𝑦𝑡 − 𝜕𝑡O★
𝑥𝑦𝑡 ∥1

∥𝜕𝑡O★
𝑥𝑦𝑡 ∥1 + 𝜖

, (16)

where 𝜖 = 0.01 prevents the numerical instability. We find this
metric to correlate well with perceptual evaluation as a temporal
stability measure in our evaluations. We refer the reader to the
supplemental material to see other metrics applied on the temporal
gradients.

5.2 Single-frame comparison
We first evaluate our denoiser on static images, configuring all
methods to process frames independently, one at a time. We disable
our temporal accumulation (Eq. (3) and (5)) and temporal filtering
(Eq. (8)) mechanisms, and call this single-frame variant ours-single.
Our algorithm consistently outperforms recent interactive denoisers.
It matches or outperforms off-line denoisers, for a fraction of the
cost. Table 2 summarizes our evaluation, and Figure 14 shows a
few examples. Ours-𝐾1 uses a single 17 × 17 kernel like the kernel-
predicting baselines. In Section 5.5.6, we discuss the advantage of
using several, iteratively applied kernels instead of using a single
large one. Full resolution images can be found in the supplemental.

5.3 Video denoising
Table 3 shows a quantitative comparison of our full model, with
temporal filtering activated, against prior methods for video denois-
ing. As in the single-frame experiment, our method achieves higher
PSNR and lower TRMAE than prior methods. Ours-wpred, ours-heur,
ours-ntk and ours-nar are ablations discussed in Section 5.5.4 and
Section 5.5.5.

5.4 Implementation and performance
We optimized our model for inference, using cuDNN 8.02 to im-
plement the fully-connected sample embedding network and the
U-net, and exploiting half-precision floating-point operations for
speed. We implemented other modules using custom CUDA kernels.
Because cuDNN cannot fuse convolution-bias-activation operations
unless the activation is ReLU, we replaced leaky ReLU with standard
ReLU in our pretrained model then fine-tuned for 150 epochs We
2https://developer.nvidia.com/cudnn
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Fig. 7. Quality of various kernel sizes vs. performance (optimized) .
On the left, we set the spatial and temporal kernel size to the same value
from 7 × 7 to 19 × 19. We run our denoiser on a GeForce RTX 2080 Ti,
and average the timings over 120 4spp frames of the Bedroom scene with
resolution 1920× 1024. On the right, we fix the spatial kernel size to 13× 13,
and vary the temporal kernel size from 1 × 1 to 19 × 19. PSNR (higher is
better) and TRMAE (lower is better) values are averaged over 6 test videos.
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Fig. 8. PSNR vs. throughput (unoptimized). With an unoptimized im-
plementation, our method already achieves an appealing runtime/quality
profile. Except ONND, for which we use the official release API, all the tim-
ings reported here use unoptimized PyTorch implementations. We report
throughput in megapixels per second (log-scale). Top-right is better. PSNR
results are averaged over 26 static test images. Table 1 shows a performance
breakdown of our optimized implementation .

applied the same procedure to all models analyzed in Section 5.5.4
and Section 5.5.5. Table 1 shows the runtime cost of each compo-
nent of the optimized implementation of our full, temporally-stable
model. We analyze the effect of the kernel size on the final qual-
ity and performance of this optimized implementation in Figure 7,
observing that 11 × 11 or 13 × 13 kernels give the best compromise.

For fair comparison with unoptimized baselines, we benchmarked
our single-frame variant (ours-single) and the baselines directly in
PyTorch. Figure 8 shows that even our unoptimized implementation
offers near-interactive frame rates while achieving state-of-the-art
results. It has only 0.94 million network parameters compared to
the off-line baselines (SBMC: 18.04M, NDLE: 17.98M, KPCN: 5.08M).

5.5 Model ablations
In this section we examine: the effect of changing the kernel sizes at
test time, how the affinity features’ dimensionality impacts quality,
alternative strategies for temporal stabilty, and the advantage of
sample embeddings over mean/variance reduction of the input.

5.5.1 Dimension of the affinity features. The dimension of our affin-
ity features directly affects the complexity of pairwise relationships
our model can capture between pixels under the kernel. A low di-
mension 𝑑 can only represent the simplest relationships (e.g., “iden-
tical color”). Table 4 summarizes our results. Using 1-dimensional

Table 1. Performance breakdown. Timings of our cuDNN implementa-
tion for 4spp inputs with 1920 × 1024 resolution using a GeForce RTX 2080
Ti graphics card. We use 13 × 13 spatial and temporal kernels.

Components FC U-Net Kernels Other Total

Time (ms) 5.76 21.07 22.72 3.19 52.74

Table 2. Quantitative evaluation on static single-frame denoising.
When processing a single image, our method is competitive with state-
of-the-art off-line denoisers that have a significantly higher computational
cost (first group), and it consistently outperforms interactive denoisers
(second group). Starred method (*) were designed to account for temporal
stability. We highlight the first and second best result in each column.
Higher PSNR (resp. lower SMAPE) is better.

PSNR
method 2spp 4spp 8spp 16spp 32spp
KPCN 27.95 30.86 32.79 33.90 34.54
SBMC 28.97 32.33 33.97 34.57 34.44
NDLE 30.08 32.20 33.63 34.45 34.73

NDLE-ms 29.47 31.81 33.14 33.87 34.12
ONND 29.40 30.62 31.79 32.88 33.91
NBG∗ 26.04 27.58 28.52 29.11 29.42
NBG-large∗ 28.58 30.09 31.20 31.94 32.58

ours-𝐾1 29.13 31.87 33.28 34.11 34.42
ours-single 30.93 32.67 33.66 34.34 34.81

Table 3. Quantitative evaluation on video denoising. The first three
groups are: single-frame off-line denoisers, interactive denoisers, and abla-
tions (§ 5.2, § 5.5.4 and § 5.5.5) on our technique. Starred method (*) were not
designed to handle videos, in particular they make no attempt at temporal
stability, hence the relatively higher TRMAE values. We highlight the first

and second best result in each column. Higher PSNR (resp. lower TRMAE)
is better.

PSNR TRMAE
method 2spp 4spp 8spp 2spp 4 spp 8spp
NDLE∗ 30.98 33.05 34.37 0.764 0.618 0.571

NDLE-ms∗ 31.02 32.91 33.96 0.806 0.662 0.595
ONND∗ 30.66 31.74 32.74 1.988 1.693 1.468
NBG 26.67 28.48 29.56 2.058 1.695 1.453
NBG-large 29.31 30.67 31.60 1.069 1.001 0.906

ours-𝐾1∗ 30.48 32.64 33.97 0.803 0.650 0.565
ours-single∗ 32.17 33.67 34.54 0.640 0.556 0.511
ours-wpred 32.18 33.48 34.33 0.513 0.482 0.462
ours-heur 32.05 32.89 33.33 0.511 0.485 0.472
ours-ntk 32.55 33.79 34.44 0.502 0.474 0.457
ours-nar 32.37 33.76 34.56 0.508 0.473 0.454

ours 32.34 33.93 34.81 0.517 0.467 0.446
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(a) reference (b) input (8 spp) (g) reference(d)(c) (e) () ours          

Fig. 9. Impact of the affinity feature dimension 𝑑 on quality. On the top row, we show how dimensionality affects the reconstruction of the fine details
in the albedo. Using fewer features in the learned affinity, our denoiser with 𝑑 = 1 cannot reconstruct the texture of the wooden wall and leaves high-frequency
artifacts (c). When 𝑑 = 2, our method cannot effectively distinguish the wooden block from the wall behind it, the color of the wooden block smears onto the
wall (d). As we increase the dimension of the affinity features to 𝑑 = 4 (e) and 𝑑 = 8 (f), our reconstruction of high-frequency albedo improves significantly.
The bottom row shows a similar behavior for high frequency geometric details. Using 𝑑 = 1 leaves jaggy artifacts (c) whereas with 𝑑 = 2, most of the details on
the red carpet are blurred (d). As the dimension increases to 𝑑 = 4 (e) and 𝑑 = 8 (f) our model reconstructs most of the details. For these examples, we did not
observe further improvements for 𝑑 larger than 8.

features leads to significantly worse results, which can explain the
limited performance of NBG (see Section 3.7, Table 2 and Table 3).
Quantitatively, we do not observe significant variations for 𝑑 ≥ 2
(Table 4), but Figure 9 shows the difference can be striking. With too
small a dimension, the denoised results lose high-frequency details.

5.5.2 No sample embeddings. To analyze the impact of our sample
embeddings (§ 3.2), we compare to two ablations. Detailed results
are provided in supplemental. The first ablation (ours-me) averages
the raw feature buffers before the sample embedding network (FC
in Eq. (1)), unlike our method which averages after FC. This ab-
lation performs favorably at 2 spp, but does not generalize well
to higher sample counts. The second ablation (ours-pixel) disables
FC altogether and directly computes the mean and variance of the
raw input buffers instead. It performs well at higher sample counts
(16–32 spp), but does not generalize to lower sample counts, where
variance estimation is less reliable. Most importantly, although it
performs on par with our method numerically (e.g., at 8 spp), it
exhibits high-frequency artifacts when the input feature buffers are
severely undersampled (Figure 10). Our method generalizes well to
all sample counts. Its advantages are most salient at the low sample
counts typical for interactive rendering.

5.5.3 Changing the kernel size at runtime. We use 13 × 13 kernels
during training, but because we predict feature vectors instead of
kernels directly, we can arbitrarily change the kernel size at test
time. Table 5 shows the impact of varying kernel sizes, for several
sample counts. It suggests smaller kernels are sufficient at higher
sample counts (less noise). Even though changing the kernel size
leads only to minor quantitative differences, Figure 11 demonstrates
that using a sufficiently small kernel size causes low-frequency noise
artifacts. The noise can be reduced by using a larger spatial context.
This can be achieved either by enlarging the spatial kernels or by

Table 4. Ablation on the affinity features dimension 𝑑 . Increasing the
dimension of the affinity features f𝑘𝑥𝑦𝑡 gives more discriminative power to
our kernels, improving quality. This evaluation is done using ours-single
model on static images. See Figure 9 for qualitative differences.

PSNR
feature size 2spp 4spp 8spp 16spp 32spp
𝑑 = 1 26.65 27.77 28.25 28.44 28.55
𝑑 = 2 30.23 31.98 32.97 33.61 34.04
𝑑 = 4 30.73 32.43 33.40 34.06 34.53
𝑑 = 8 (ours) 30.93 32.68 33.67 34.34 34.81
𝑑 = 12 30.97 32.62 33.64 34.35 34.86
𝑑 = 16 30.11 32.63 33.76 34.44 34.81

(a) input (b) aux. input (c) ours-pixel (d) ours-single (e) reference

Fig. 10. Samples embeddings vs. summary statistics.Mapping the raw
sample feature buffers (b, one map shown) to learned embeddings prior to
averaging outperforms simple statistics, especially when using few samples.
The simple simple statistics ablation leaves high-frequency artifacts (c) when
the auxiliary buffers are noisy due to undersampled geometry (b, top) or
undersampled albedo (b, bottom). Our method (d) with sample encoding
distinguishes the noise from the data, producing clean results.
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input
4spp

reference
2048 spp

(a) ours-single (b) ours-ntk (c) ours

Fig. 11. Visual impact of the kernel size and temporal denoising. In
highly noisy scenes, a single-frame denoiser can leave perceptually salient
low-frequency residual noise (a, 7 × 7). Using larger kernels (a, 13 × 13)
mitigates this issue. The ablation with no temporal kernels (b) exhibits
low-frequency artifacts for smaller kernels, but still significantly improves
upon our single-frame variant (a) because it benefits from our temporal
accumulation scheme. Our full model further improves denoising quality
thanks to temporal kernels, which expand the filtering footprint in time (c).

means of temporal filtering mechanisms, which effectively lets the
method use a larger spatial footprint.

5.5.4 Temporal accumulation. We show the importance of tem-
porally accumulating features (Eq. (3)) and radiance (Eq. (5)), by
disabling both mechanisms, but keeping the temporal kernel. In this
ablation, ours-wpred, we replace the warped previous sample embed-
dings in the U-net’s inputs (W𝑡 ē𝑥𝑦,𝑡−1 in Eq. (2)) with the warped
previous prediction. This strategy is inspired by Hasselgren et al.
[2020]. In a second ablation, ours-heur, we replace our learned per-
pixel temporal blending weight with a constant 𝜆𝑥𝑦𝑡 = 0.8 [Koskela
et al. 2019; Meng et al. 2020; Schied et al. 2017]. This ablation cannot
properly reconstruct view-dependent effects (Fig. 6). Table 3 shows
both ablations reduce quality (up to ∼ 1.5dB PSNR), suggesting that
our temporal accumulation scheme with adaptive weights is key.

5.5.5 Temporal filtering. In ours-ntk, we disable the temporal kernel
(§ 3.5.2) but keep the temporal accumulation mechanism. Unlike our
full model, this ablation cannot completely remove low-frequency
noise (Fig. 11). Table 3 shows the temporal kernel of our full method
is more beneficial at larger sampler counts (> 2spp), i.e., the model
benefits less from the previous denoised frame when noise is severe.

Using both a temporal kernel and temporal radiance accumulation
(Eq. (5)) might seem redundant. In ours-nar, we disable radiance
accumulation to show this is not the case. The pixel embeddings
are still accumulated temporally, so the U-Net can still produce
reliable features, benefiting from an effectively higher sample count.
Radiance accumulation is more effective at higher sample counts
(Table 3).

5.5.6 Affinity-based kernels vs. gather kernels. To better understand
their properties, we run an ablation where our affinity-based kernels
are replaced with full-rank gather kernels [Bako et al. 2017] (labeled
gather). Furthermore, we run this comparison for 𝐾 = 1 and 𝐾 = 3
kernels to illustrate the advantages of our sequential dilated filtering
approach. Except for the last convolution, whose channel count
depends on the kernel size, the ablation’s architecture is identical
to our full model. This analysis is summarized in Table 5.
In the single kernel case (𝐾 = 1 with no dilation in Section 3.3),

gather kernels numerically outperform our affinities. However, both

(a) reference (b) input (c) gather (d) ours (e) reference

Fig. 12. Affinity-based kernels recover fine details better. By looking
at the Table 5 to decide the optimal kernel sizes, we choose 9 × 9 with
𝐾 = 3 for gather. For fair runtime usage, we choose 9 × 9 with 𝐾 = 3 for our
method despite obtaining better results for larger kernel sizes. Affinity-based
kernels (d) are better at reconstructing fine geometric details (top) as well
as high-frequency reflections (bottom) both of which are blurred by gather
kernels (c).

approaches create block artifacts (images in supplemental) because
the kernels are too small to be effective, suggesting a larger spatial
context is needed. Iteratively filtering with 𝐾 = 3 dilated kernels,
yields a much larger spatial support, from which our affinity-based
kernels benefit significantly, outpeforming gather kernels. The im-
provements are much more modest for gather kernels.

The advantage of our affinities becomes clearer with large kernels,
where modeling complex pairwise interactions between pixels is
challenging. Overall, affinity-based kernels are significantly better
at reconstructing high-frequency details (Figure 12). Conversely,
visual inspection shows that gather kernels are better at removing
low-frequency noise at low sample counts, when the kernel size
is small (the top-left region of the Table 5 is dominated by gather).
Still, together with our multi-scale dilation and temporal filtering
strategies, our affinity-based kernels can filter low-frequency noise
better.

Finally, the memory access pattern of gather kernels make them
more efficient to apply to the noisy image. However, they require a fi-
nal convolution layer with significantly more parameters (quadratic
in the kernel size) than our affinities (constant size), so that, overall,
both approaches have roughly the same execution time. Gather
kernels require more memory as the kernel size increases. This tilts
the runtime balance in favor of our affinity-based kernels. The sup-
plemental material shows a numerical comparison on memory and
runtime performance, and additional visual comparisons.

5.6 Limitations
We visualize some of the limitations of our denoiser in Figure 13.
First, our training dataset does not contain renderings with dis-
tributed effects, such as motion blur and depth of field which limits
the capability of our method to generalize to such scenes. Second,
we have difficulty with light transport scenarios where highly con-
tributing paths are sampled with very low probabilities during the
rendering process. In future work, it is natural to explore connecting
the denoiser with a neural importance sampling network [Müller
et al. 2019]. Third, we generate motion vectors only at the first in-
tersection point for each pixel during the rendering process, which
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Table 5. Quantitative comparison between the affinity-based kernels (ours) and gather kernels. The PSNR results of each method on the static-
image test scenes are shown. For each spp and kernel size pair, we use different colors to highlight whether affinity-based or gather is the best. The best
PSNR result for each spp is highlighted in bold. Number of kernel entries is the representative of the respective kernel’s runtime and storage (only for gather)
cost.

𝐾 = 1 𝐾 = 3
9 × 9 11 × 11 13 × 13 15 × 15 17 × 17 19 × 19 21 × 21 23 × 23 5 × 5 7 × 7 9 × 9 11 × 11 13 × 13

2spp ours 27.58 28.19 28.61 28.91 29.13 29.28 29.38 29.44 29.43 30.19 30.57 30.79 30.93
gather 30.11 29.13 30.43 30.25 29.18 30.40 29.02 30.26 30.23 30.61 30.98 30.69 30.82

4spp ours 30.39 31.00 31.40 31.67 31.87 32.00 32.07 32.10 31.68 32.26 32.50 32.62 32.67
gather 32.03 31.94 32.29 32.31 31.98 32.39 32.11 32.37 32.29 32.35 32.51 32.44 32.50

8spp ours 32.15 32.63 32.94 33.14 33.28 33.36 33.40 33.41 33.10 33.49 33.63 33.67 33.66
gather 33.14 33.31 33.34 33.42 33.30 33.43 33.50 33.38 33.35 33.36 33.41 33.34 33.44

16spp ours 33.31 33.67 33.88 34.02 34.11 34.14 34.15 34.14 34.10 34.33 34.39 34.38 34.34
gather 33.93 34.20 34.10 34.16 34.10 34.15 34.36 34.08 34.13 34.07 34.02 33.77 34.11

32spp ours 33.95 34.18 34.31 34.38 34.42 34.43 34.41 34.38 34.85 34.95 34.93 34.88 34.81
gather 34.53 34.80 34.67 34.65 34.60 34.72 34.97 34.60 34.64 34.58 34.45 33.17 34.53

kernel entries 81 121 169 225 289 361 441 529 75 147 243 363 507

cannot model the true warping of the specular regions. So, for highly
specular materials, we do not generate motion vectors. See the “bed-
room” and “bathroom” scenes in the supplemental video for such
examples that cause temporal artifacts.

(a) reference (b) input (c) ours (d) reference

Fig. 13. Limitations. The top row (a) shows a motion blurred sphere in
front a of a static checkberboard. Our method (c) was not trained to handle
motion blur, so it fails to spread the samples sufficiently to reconstruct
the smooth gradient shown in the reference (d). The bottom row shows a
specular material. A 2 spp input (b) is too severely under-sampled to properly
reconstruct the metallic reflection.

6 CONCLUSION
We have presented a novel method for denoising Monte Carlo ren-
derings at interactive speedswith quality on-par with off-line denois-
ers. We use an efficient network to aggregate relevant per-sample
features into temporally-stable per-pixel features. Pairwise affinity
between these features are used to predict dilated 2D kernels that
are iteratively applied to the input radiance to produce the final

denoised result. We show our model can spatially adjust the kernels
to effectively smooth out noise and preserve fine details. We further
demonstrate how to incorporate the spatially-warped content from
previous frames to produce a temporally consistent result.
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